
Fast Fourier Transformer Visualization
Fatima AlSaadeh
Rutgers University

Piscataway, NJ, USA
Email: fatima.alsaadeh@rutgers.edu

Ashley Dunn
Rutgers University

Piscataway, NJ, USA
Email: ashley.dunn@rutgers.edu

Abstract— Fast Fourier transformations are running millions of
times a day; the algorithm behind them is essential in helping
different fields of science and technology such as data analytics,
medical imagery, and compression of images, audio, and video. The
divide and conquer design of the fast Fourier transform algorithm
made a breakthrough which dropped the complexity of polynomial
multiplication from O(n2) to O(n logn) [1].

I. PROJECT DESCRIPTION

This project will include the fast Fourier transformer
algorithm visualization and implementation. The visualization
will cover how this important arithmetic algorithm works
using a divide and conquer method to speed up polynomial
multiplication. The main goal behind choosing this algorithm
is to develop a deeper understanding of it as well as to
highlight its applications. We will start the video with a section
covering a mathematical introduction into the discrete Fourier
transform, complex numbers, and polynomial arithmetic, all
of which will provide the basis for us to introduce the
fast Fourier transform. The video will then explain how we
can multiply polynomials fast using the divide and conquer
algorithm design, and cover the time complexity and the output
of this algorithm. After understanding the basic idea of this
algorithm we will try to implement it and test it over different
data samples to show it in action. Finally we will cover the
main important applications of this algorithm. In order to cover
all these steps during the given timeline we will be building all
parts simultaneously and focus on finishing the main version
of all sections before trying to improve and fine tune them.
This will ensure that we have a presentable project by the due
date.

The project has four stages: Gathering, Design, Infrastruc-
ture Implementation, and User Interface.

A. Stage1 - The Requirement Gathering Stage.

The general system description: This system will analyze
a given signal by computing the Discrete Fourier Transform
to convert it from its given domain to the frequency domain.
This process is usually long and slow on large sample sizes.
Using the Fast Fourier transform, this application will make
this process faster by breaking down the signal sample size
into smaller sized samples, recursing on them separately, and
then merging the results to produce the final representation of
the signal in the frequency domain.

• The three types of users (grouped by their data ac-
cess/update rights):

• The user’s interaction modes: Biomedical Engineers
• The real world scenarios:

– Scenario1 description: Biomedical engineers can use
this system to analyze the electrocardiogram signals’
compression to infer the frequency component of the
generated periodic signals.
System Data Input for Scenario1: Electrocardio-
gram signals.
Input Data Types for Scenario1: Discrete sample
numbers.
System Data Output for Scenario1: Frequencies
of heart rate.
Output Data Types for Scenario1: Plot frequencies
and complex numbers.

– Scenario2 description: Biomedical engineers can use
this system as part of the X-ray analysis to produce
distortion free images from parts of the body.
System Data Input for Scenario2: X-ray Images.
Input Data Types for Scenario2: Discrete sample
numbers.
System Data Output for Scenario2: Representa-
tion of the image pixels in the frequency domain.
Output Data Types for Scenario2: Plot frequencies
and complex numbers.

• The user’s interaction modes: Electrical Engineers
• The real world scenarios:

– Scenario1 description: Circuits signal distortion de-
tection.
System Data Input for Scenario1: Circuits signals.
Input Data Types for Scenario1: Discrete sample
numbers.
System Data Output for Scenario1: Frequencies
of signals in order to show distortion.
Output Data Types for Scenario1: Plot frequencies
and complex numbers.

– Scenario2 description: Sending signals through the
air.
System Data Input for Scenario2: signals.
Input Data Types for Scenario2: Discrete sample
numbers.
System Data Output for Scenario2: Signal fre-
quency domain.
Output Data Types for Scenario2: Plot frequencies
and complex numbers.

• The user’s interaction modes: Audio/Music Engineers
• The real world scenarios:

– Scenario1 description: This system can be used in
audio and music detection. The application can be
improved to read music signals and identify which
notes or songs are being played. System Data Input
for Scenario1: Audio signals.
Input Data Types for Scenario1: Discrete sample
numbers.
System Data Output for Scenario1: Frequencies
of the audio that can be compared with the stored
frequencies of existing songs and notes and return
the relation between them.
Output Data Types for Scenario1: Plot frequencies
and complex numbers and note or song.

– Scenario2 description: This system can be used as
part of audio compression to reduce the memory
storage without losing the audio quality.
System Data Input for Scenario2: audio signals.
Input Data Types for Scenario2: Discrete sample
numbers.
System Data Output for Scenario2: Frequencies
of the audio signals.
Output Data Types for Scenario2: Plot frequencies
and complex numbers.

• Project Time line and Division of Labor:
• Week 1 (Nov, 4 - 8):

– Submit first project proposal. (Both)
– Decide the tools and programming language. (Both)
– Define the meeting times and divide the work.(Both)
– Start the flow diagram of the system.(Fatima)
– Start the Pseudo Code.(Ashley)

• Week 2 (Nov, 11 - 15):

– Submit first project report.(Both)
– Present the first project report.(Both)
– Complete the flow diagram and Pseudo Code.(Both)
– Collect data that will be used for testing.(Both)

• Week 3 (Nov, 18 - 22):

– Start the algorithm visualization video record-
ing.(Ashley)

– Start the code implementation.(Fatima)

• Week 4 (Nov, 25 - 29):

– Submit second project report.(Both)
– Present the second report.(Both)
– Second iteration over the algorithm visualiza-

tion.(Fatima)
– Second iteration over the code implementa-

tion.(Ashley)
– Review and Testing. (Both)

• Week 5 (Dec, 2 - 6):

– Prepare the final presentation. (Both)
– Practice the presentation.(Both)
– Third iteration over the work done. (Both)

B. Stage2 - The Design Stage.
Flow Diagram Description.

The flow diagram in Fig.1 describes the system which uses
the recursive divide and conquers strategy for implementing
the fast Fourier algorithm. Start with an input signal, which is
recorded as Hertz and amplitude. That signal is then converted
into a sampler of data points and ω, the sampling frequency,
and an nth root of unity. From here, the diagram follows the
pseudo-code. The algorithm has time complexity of O(n log n)
and a time complexity of O(n log n). This is due to the
recurrence relation:

T (n) = 2T (n/2) +O(n)

as the algorithm performs n iterations and has an array of size
n each time, and at each recursive step divides the input into
two halves. Thus, we can use the Master Theorem.
Flow Diagram.

See Fig. 1 on page 3
High Level Pseudo Code System Description.

The signal-processing function takes in an input signal in
terms of amplitude verses time, digitizes it via sampling, and
then performs the fast Fourier transform. The FFT function
uses a divide and conquer strategy, separating the input array
a into the even and odd powers of ω, thus expressing it as:

a(x) = ae(x
2) + x ∗ ao(x2)

FFT is called on each ae and ao portion, and then the results
are put together.
Pseudo Code.

Algorithm 1 The fast Fourier transform [1]
Function FFT(a, ω)
Input: array a = [0, 1, . . ., n-1]
Output: ω a primitive nth root of unity

if ω = 0 then
return a

end if

seven[0, 1, ...,
n
2 − 1] = FFT(a[0, 2, ..., n− 2], ω2)

sodd[0, 1, ...,
n
2 − 1] = FFT(a[1, 3, ..., n− 1], ω2)

for j = 0 to n
2 − 1 do

rj = seven[j] + ωjsodd[j]
rj+n

2
= seven[j]− ωjsodd[j]

end for
return r[0, 1, ..., n− 1]

Function signal-processing(sin)
Input: sin signal in time domain
Output: sout signal in frequency domain

plot(sin)
a, ω = sampler(sin)
sout = FFT(a, ω)
plot(sout)

Fig. 1. Flow Diagram

Algorithms and Data Structures.
• Function FFT performs the fast Fourier transform on an

input array using a nth root of unity, ω
• Function signal-processing takes the input signal in the

form of a function of time, and uses FFT to output a
function of frequency.

• Array a contains the sampled data points from the input
function to signal-processing

Flow Diagram Major Constraints.
• Input a to the FFT function should be a vector of real

numbers
• Input ω to the FFT function should be a complex number

whose powers 1, ω , ωˆ2, ., ωˆn-1 are the complex nth
roots of unity.

C. Stage3 - The Implementation Stage.

Code
The programming language Python[2] and Pycharm[3] IDE

were used to build this project. In order to implement the

algorithm, a graphical user interface, voice recording, and
converting audio to a wave, we used the following Python li-
braries: SciPy[4], NumPy[5], Matplotlib[6], wave, pyaudio[7],
and tkinter.

The implementation of this FFT algorithm visualiza-
tion application can be found in the following repository:
git@github.com:fatiemahsaadeh/fft visualization project.git

Input Data

The input of this application starts as a wave function. This
wave comes either from a combination of two sinusoids with
frequency and amplitude specified by the user, or an audio
wave recorded by the user. The FFT function will then take
a user-specified number of samples across the resulting wave.
These samples are in the form of amplitude/time coordinates.
Additionally, the function takes in a primitive nth root of unity.

Sample Input Snippet
Getting 8 samples of 1 * sin(4 * 2 * π * t) signal

Amplitude Time
-9.74927912e-01 0
-7.81831482e-01 0.001002
-4.89858720e-16 0.00200401
-4.33883739e-01 0.00300601
0.00000000e+00 0.00400802
4.33883739e-01 0.00501002
7.81831482e-01 0.00601202
9.74927912e-01 0.00701403

root = (0.707106+0.7071067j)

Output Data
The output of this application is the DFT vector calculated

by the following equations using FFT algorithm and as the
snippet below shows, the frequencies are symmetric around
the zero axis.

Xke =

N/2−1∑
n=0

[x2n.e
−(j∗2∗π

N/2
)∗k∗2n] (1)

Xko =

N/2−1∑
n=0

[x2n+1.e
−(j∗2∗π

N/2
)∗k∗2n+1] (2)

Sample Output Snippet

Frequency
-1.253960+0.000000j
-1.717246+0.711307j
2.190643-2.190643j
0.153583-0.370782j
0.000000+0.000000j
0.153583+0.370782j
2.190643+2.190643j
-1.717246-0.711307j

Demo and sample findings
• Sample Input Data Size: 4096 bytes
• Output Data Size: 4072 bytes
• The FFT function memory usage:

Line Mem usage Increment
193 79.3 MB 0.1 MiB

D. Stage4 - User Interface.

The application’s user interface contains two main com-
ponents: the input windows and display window. The input
windows give the user the ability to choose the original
signal to perform our fast Fourier Transform on. They have
two options to do this: inputting frequencies (fr1, fr2) and
amplitudes (am1, am2) to create an input wave represented by

am1 ∗ sin(fr1 ∗ 2 ∗ π ∗ t) + am2 ∗ sin(fr2 ∗ 2 ∗ π ∗ t)

or record a one second audio clip. Next, one of two different
display windows will appear. The user can choose to walk
through the the algorithm, or to show the final results. They
also must specify the sampling rate to be used by the algo-
rithm.

Due to the nature of a divide and conquer algorithm,
displaying every single step would be both overly time con-
suming and overly repetitive. For this reason, when the user
decides to walk through the steps, we only show two algorithm
calls at each recursive layer. Figure 2 shows a recursion tree
which illustrates which calls to our fast Fourier Transform are
dsiplayed to the user and which are not.

Fig. 2. Sample application recursion tree, with calls that are displayed to the
user in green, and calls that are not displayed in blue.

The possible user interactions with the system are defining
the frequencies and amplitudes of the sine waves to be added,
recording an audio clip, choosing whether to track the FFT
step by step or plot the final resulting signal, and clicking on
the window to proceed to the next step of the process.

A window indicating an invalid input error will appear when
the user inserts any value that cannot be converted to a float.

The results will be four plots showing the original signal
(amplitude/time), and the resulted phase spectrum, amplitude
spectrum and imaginary/real values of the current left and right
points in each layer. (If the user chooses to only plot the final
results, the last graph will be excluded.)

As described the first view is define the signal frequency and
amplitude, the second view is to plot the original signal in time
domain, and show the FFT algorithm step by step plotting the
resulted signal in frequency domain, phase spectrum and each
layer of the left and right recursion complex numbers. The
third view will plot the final results of the time to frequency
domain converting.

Deliverables
Python application:
• Initial Activation Statement: Python fft.py
• Initial UI: See Fig. 3. Application Input

Fig. 3. Application Input

Sample User Navigation Paths:
Navigation Path 1

• Input values for Frequency and Amplitude of 2 sinusoids
to be combined for an input signal

• Click ”Step By Step”
• A graph of the original signal, current left and right

values, the data in the phase spectrum, and the data in
the amplitude spectrum will appear

• Click on screen to proceed to the next step of the
algorithm

Navigation Path 2
• Input values for Frequency and Amplitude of 2 sinusoids

to be combined for an input signal
• Click ”Final Results”
• A graph of the original signal, final left and right values,

the data in the phase spectrum, and the data in the
amplitude spectrum will appear

Fig. 4. Recording Window

Navigation Path 3
• Click ”Talk to me”
• Click ”Start Recording”
• Make some short noise
• Click ”Plot it”
• A graph of the original signal, current left and right

values, the data in the phase spectrum, and the data in
the amplitude spectrum will appear

• Click on screen to proceed to the next step of the
algorithm

Fig. 5. Application Output

REFERENCES

[1] S. Dasgupta, C. H. Papadimitriou, and U. Vazirani, Algorithms, 1st ed.
New York, NY, USA: McGraw-Hill, Inc., 2008.

[2] Python3.7.5. [Online]. Available: https://docs.python.org/3.7/
[3] Pycharm. [Online]. Available: https://www.jetbrains.com/pycharm/
[4] P. Virtanen, R. Gommers, T. E. Oliphant, M. Haberland, T. Reddy,

D. Cournapeau, E. Burovski, P. Peterson, W. Weckesser, J. Bright, S. J.
van der Walt, M. Brett, J. Wilson, K. Jarrod Millman, N. Mayorov,
A. R. J. Nelson, E. Jones, R. Kern, E. Larson, C. Carey, İ. Polat, Y. Feng,
E. W. Moore, J. Vand erPlas, D. Laxalde, J. Perktold, R. Cimrman,
I. Henriksen, E. A. Quintero, C. R. Harris, A. M. Archibald, A. H.
Ribeiro, F. Pedregosa, P. van Mulbregt, and S. . . Contributors, “SciPy
1.0–Fundamental Algorithms for Scientific Computing in Python,” arXiv
e-prints, p. arXiv:1907.10121, Jul 2019.

[5] T. Oliphant, “NumPy: A guide to NumPy,” USA: Trelgol
Publishing, 2006–, [Online; accessed ¡today¿]. [Online]. Available:
http://www.numpy.org/

[6] J. D. Hunter, “Matplotlib: A 2d graphics environment,” Computing In
Science & Engineering, vol. 9, no. 3, pp. 90–95, 2007.

[7] J. de Langen. Playing and recording sound in python. [Online].
Available: https://realpython.com/playing-and-recording-sound-python

