Emotions Recognition

from Audio Speech Using
Deep Learning
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Modeling

e Data Manipulation,
Encoding and
Augmentation.

e Convolutional Neural
Network

Data Manipulation

e Explore audio data
using visualizations and
features analysis.

Data Exploration

e Hold-out model
evaluation using loss
and accuracy.
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e The Ryerson Audio-Visual
Database of Emotional
Speech and Song.

e Berlin Database of Emotional

Speech.
Data Preparation



Data Preparation

1. The Ryerson Audio-Visual Database of Emotional Speech and Song (RAVDESS):

e The audio-only files contain 1440 files, 24 actors, 12 male and 12 female.
e English.

2. Berlin Database of Emotional Speech (EMO-db) :

e The audio files contain 535 files, 302 males, 233 females
e Germany
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Data Exploration
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Data Manipulation

Data Standardization

Data Augmentation
m Adding white noise.

m Stretching the sound.

m Random Shifting.
Resampling and Reduction.

Classes one-hot encoding.
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Convolutional Neural Networks

e Require minimal data pre-processing, due to their convolutional layers and their
ability to extract features, eliminating the feature engineering by hand step.
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e It takes the raw data as an input and built of different convolutional, pooling and
fully connected layers.

e Convolutional Layers have filters which help detect the patterns in the raw input
data.



Model Architecture

e Input

e Temporal Convolution: (ConviD)
Y=(X-F+2*P)[s +1

e Batch Normailization.

e MaxPooling.

e Activation function.

e Dropout.

e Average Pooling

e Softmax.
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Credit: https://www.youtube.com/watch?v=ulKbLD6BRJA




Model Architecture

Convolutional Convolutional Convolutional Global avg pooling
Layer Layer Layer Output: 1
Receptive Field: 80 Receptive Field: 3 Receptive Field: 3

] 128 feature maps 128 feature maps 256 feature maps

—  length=15981 Length:1493 Length:371

[ = Dropout Layer

Dropout 0.5

] LT
Input length Max Pooling Max pooling Max pooling SoftMax
24000 Pooling length=4 Pooling length:4 Pooling length:4 14 classes

Output length: 1495 Output length: 373 Output length: 92



Evaluation

e Evaluation metrics:
o Accuracy.
o Precision.
o Recall.
o Loss

e Fitting and testing the model to predict the classes in different categories:
o 2classes: Emotions Intensity strong and natural.
o 4 classes: positive, negative, fearful and surprised.
o 7 classes emotions after we merged the neutral and calm.
o 14 classes: all emotions male and female: male and female, neutral - calm, happy,
sad, angry, fearful, disgust, surprised.

e Using holdout evaluation method:
o Split the data into training and testing datasets 80%, 20%
o Further split the training data into training and validation 80%, 20%.



Results Analysis
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EmoDB model accuracy and loss
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Table 2. Train and test accuracy - EmoDB

Classes Train Test

4-classes 87.1% | 71.03%
7-classes 85.9% | 60.2%
14-classes | 87.9% | 60.7%
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Table 1. Train and test accuracy - RAVDESS

Classes Train Test

2-classes 89.0% | 68.0%
4-classes 91.8% | 55.7%
14-classes | 86.5% | 51.8%




Applications
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