
GRAPH SYSTEM
REQUIREMENTS
SPECIFICATION

for

Human-Computer Graph
Exploration and Tele-Discovery

Version 1.0

Prepared by Fatima AlSaadeh

Supervised by James Abello

Rutgers University

1

September 4, 2020

2

Contents

1 Introduction 4
1.1 Purpose . 4
1.2 Project Scope . 4
1.3 Intended Audience and Reading Suggestions 4
1.4 References . 5

2 Overall Description 6
2.1 Product Perspective . 6
2.2 Product Functions . 6
2.3 User Classes and Characteristics . 7
2.4 Operating Environment . 7
2.5 Design and Implementation Constraints 7
2.6 User Documentation . 8
2.7 Assumptions and Dependencies . 12

3 External Interface Requirements 14
3.1 User Interfaces . 14
3.2 Hardware Interfaces . 22
3.3 Software Interfaces . 22
3.4 Communications Interfaces . 22

4 Other Nonfunctional Requirements 23
4.1 Data and Performance Requirements . 23

4.1.1 ER Diagram . 24
4.2 Software Quality Attributes . 24

5 Other Requirements 25
5.1 Appendix A: Demos . 25
5.2 Appendix B: Analysis Models . 25
5.3 Appendix C: Fabula Dataset and Other Refrences 28

3

1 Introduction

1.1 Purpose

This Graph system is designed using a collection of the referenced authors’ work to
visualize various network datasets of a size up to 214 edges utilizing a web application
using NodeJs, D3, and WebGL, different algorithms, and mechanisms that we will list in
detail in this document. In addition to the two and three-dimensional graph visualizing
that this project will use, the goal is to make it both interactive and feasible for extracting
semantics following different techniques.[3]

1.2 Project Scope

The purpose of this graph system is to simplify the large network datasets exploration
process by providing a graph visualization and responsive easy-to-use interaction tech-
niques. Above all, this system offers semantic extraction functionalities that will help
the user get a summary of their dataset after exploring it.

1.3 Intended Audience and Reading Suggestions

Definitions:

• Sparse Net Algorithm [2]:

– Iteratively finding longest shortest paths in a graph, the diameter of the graph.

∗ Find a farthest pair of vertices (x,y) in the graph and a shortest path
between them.

∗ Find a third vertex (z) of maximum distance from both x and y.

∗ Find a shortest path from z to the shortest path from x to y.

– Iterate.

• Shortest Path: ”a path between vertices in a graph such that the total sum of the
edges weights is minimum.”

• Fixed Point Decomposition [4]:

– ”Edge Partitioned into Maximal Edge Subgraphs of Peel value k.”

∗ Peel Value: ”the largest i [1, deg(u)] such that u belongs to a subgraph
of G of minimum degree i.”

4

∗ Fixed Point: ”A graph F is a fixed point of degree peeling k if core(F) =
V (F) and the peeling value of F is k. Equivalently, a graph F is a fixed
point of degree peeling if the vertex peel decomposition of F has only one
class and its peeling value is equal to its minimum degree.”

• Egonet: ”subgraph induced by a vertex neighbors.” [5]

• Story Auto Generation Algorithm:

– start from one of the furthest points in the first sparsenet path. (1)

– Use it as an opening statement for the story.

– Discover its neighbors.(2)

– Use them to continue the previous statement.(3)

– We have a paragraph now.(4)

– Find the neighbor of the neighbors that share the most vertices with the
previous ones and has the most vertices that are new.(5)

– Use it to start a new statement that continues the story.(6)

– Repeat from 3 until reaching the furthest point in the path.(7)

– Get the next path in the sparsenet Repeat from (3) - (7).(8)

1.4 References

[1] 3D Force Graph. url: https://bl.ocks.org/vasturiano/02affe306ce445e423f992faeea13521.

[2] James Abello, Daniel Mawhirter, and Kevin Sun. “Taming a Graph Hairball: Local
Exploration in a Global Context”. In: (2019).

[3] James Abello and Daniel Nakhimovich. “Graph Waves”. In: (2020).

[4] James Abello and François Queyroi. “Network decomposition into fixed points of
degree peeling”. In: (2014).

[5] James Abello et al. “Atlas: Local Graph Exploration in a Global Context”. In:
(2019).

[6] Datasets. url: https://github.com/benedekrozemberczki/datasets.

[7] Node.js. url: https://nodejs.org/en/.

[8] Three.js. url: https://threejs.org/.

5

https://bl.ocks.org/vasturiano/02affe306ce445e423f992faeea13521
https://github.com/benedekrozemberczki/datasets
https://nodejs.org/en/
https://threejs.org/

2 Overall Description

2.1 Product Perspective

The system is designed for network datasets exploration using graph visualization. It
is a web-based system implementing client-server model. The Graph System provides
different mechanisms for users to discover the data and get summarized semantics from
it.

2.2 Product Functions

The following are the main functions this system provides:

• Data Preprocessing: The server preprocesses plain csv files, serves the web pages
with processed data files, and saves some visualization data (like node layouts) so
they can be reused.

• Data Visualization: the client-side provide the system portal where the user can
choose the dataset to start the visualization and exploration process.

• Labels on Demand in Different Languages: The system provides on demand labels
using the language the user chose if the data provided is mapped to different
languages mapping.

• Interactive Data Exploration: once the exploration process starts, the system
makes it interactive using :

– Paths auto exploring on demand.

– Mouse clicks, mouse hovering, mouse selection and their combinations.

– Menu driven button and tabs.

– Basic visual data elements controls : size, color, texture.

– Zooming: mouse control, elastic window.

– h-Sliders(one-sided, two-sided).

• Data Filtration and Reduction: the system provides different filtration and reduc-
tion techniques to make it easier for the user to understand large datasets using:

– Fixed point decomposition. [4]

– Sparsenet.[2]

6

– Hotspot Filtering: where hotspots are the vertices with a degree above the
average.

– Nodes coloring by labels, labels ordering and hotspots.

• Data Summary and Annotation: the system provides different summarizing tech-
niques to help the user finish the exploration process with valuable notes and
summaries about the data:

– Generate Story: automatic story generation from the sparsenet path labels
and download it on demand.

– Add Annotation: this technique gives the user the flexibility to add notes on
demand and append to these notes interesting vertices automatically.

– Download Hotspots and Neighbors.

2.3 User Classes and Characteristics

This system will support users from different backgrounds like students, researchers,
and users who want to achieve network datasets analysis, i.e., social network analysis,
internet security, textual analysis, citation analysis. The functionalities provided in
the previous section is available for all type of users except for the data preprocessing;
the data files should be sent to the administrators to enter the system and
preprocessed.

2.4 Operating Environment

Operating environment for the graph system is as listed below:

• client-server system

• Operating system: Windows, Mac OS, and Linux.

• Data Storage: data2 folder for the datasets in csv format and temp2 folder for
preprocessed data generated from the system and the labels mapping in csv format.

• platform: NodeJs [7], THREE.js [8], 3D Force Graph Library [1] and C++

2.5 Design and Implementation Constraints

• The labels on demand will be available only if the dataset provided has a labels
mapping.

• Every new dataset with new labels will need a code update to perform the color
nodes by labels Figure.3.8, hotspots and story generation features.

7

• The administrator will need to run this command in the bin folder before deploy-
ment to make sure, the user will be able to use the sparsenet functionality:

g++ -std=c++11 algorithm.cpp -O3 -o sparsenet_approximate

• to run this project locally please run :
in bin folder :

g++ -std=c++11 algorithm.cpp -O3 -o sparsenet_approximate

in the root folder:

npm install

npm start

• This system is tested and verified on chrome web browser.

2.6 User Documentation

The following is the user manual for the system, the describing pictures referenced are
in section 3:

• The user starts by selecting the dataset from the menu in the left side of the
screen.Figure.3.2

– To explore the whole graph selecting the dataset is enough.

– To have the fixed point decomposition feature the user need to check the
”Using Fixed Point” checkbox in the bottom of the datasets menu before
selecting the dataset.

– Selecting to explore the whole dataset will be interactive only if the dataset
with number of edges less than or equal 214

– This step will be followed with ”Loading Graph, please wait ...” message
prompt in the middle footer of the screen.Figure.3.3

• Whole graph exploration:Figure.3.4

– Once the graph drawing appears, the user can zoom, pan and rotate.

∗ Zooming is using the mouse wheel or touch pad.

∗ Rotating the graph you need to click on it using the mouse hold the click
and start moving it in the desired direction.

∗ Panning the graph it should be moved by mouse click first after that, the
user can move it to left, right, top and bottom using the arrow keyboard
keys.

8

– Labels on demand: When the user hover on vertex by mouse.

– Vertex select and drag: click on the vertex to select it and drag it by changing
the mouse location to the required position while selecting, Selected vertex
will be marked by (+) marker as long as it’s selected.

– Vertical spread, horizontal spread, node size and link thickness can be changed
by dragging the sliders in the footer of the screen.

– More statistics about the graph can be found in the header of the screen or in
the third tab in the right of the screen, and statistics plots in the second tab
Figure.3.4, the fourth tab gives the user the connected components and layers
ribbons, while in the fifth tab the user can choose various search, filtering and
language change options.Figure.3.1

– In the right footer of the screen buttons can be found to add annotation, and
generate story.

– In the left footer of the screen buttons can be found to save the layout to see
the same graph when the user come back to same dataset, save the drawing
as image, (un)pause the drawing and other camera control options.

– The user can explore the egonet of a vertex in a separate popup window by
clicking on the keyboard key ’e’ and hover by mouse on the vertex, if the
vertex has an egonet with number of edges more than 29 this new window
will appear, having the hovered vertex highlighted in the background. In this
new window the user can show the labels on demand once hover on the vertex,
rotate, zoom and change the edges length. This window will appear if the
hovered vertex. Figure.Figure.3.6

– The user can explore the egonet of a vertex in a separate popup window by
pressing on the keyboard key ’e’ and hover by mouse on the vertex, if the
vertex has an egonet with number of edges more than 29 this new window
will appear, having the hovered vertex highlighted in the background. In this
new window the user can show the labels on demand once hover on the vertex,
rotate, zoom and change the edges length. This window will appear if the
hovered vertex. Press the keyboard key ’e’ again to disable this feature.

– The user can start the sparsenet exploration by pressing the keyboard key ’s’,
or choosing sparsenet from the menu on the right of the screen under subview
tools: Figure.3.7

∗ The first sparsenet path will appear in red color.

∗ Hovering on a vertex in the sparsenet will give the user the label and an
option to show the neighbors labels.

∗ The user can press keyboard key ’a’ to show the labels of the vertices
with degree above the average. Figure.3.7

∗ a new slider will appear in the footer of the screen with Path Sequence
label where the user can step to next path, step back or move the slider

9

to the end show the whole sparsenet graph.

∗ Statistics about the visible number of nodes and edges will appear in the
header of the screen and in the third info tab.

∗ The user can show the vertices that are at distance one from the sparsenet
graph by checking the ”Show Neighbors” checkbox from the menu on the
right of the screen unders sparsenet.

∗ Two-sided slider to filter the sparsenet paths appearing can be found in
the fifth settings tab ”sparsenet paths”.

∗ Auto exploring shortest path : The user can select any two vertices in
the sparsenet graph, Go to the fifth setting tab and check the checkbox
”Auto Exploring Path” and choose how the labels should appear in the
auto exploring. After that right click on the white space and choose
shortest path. The shortest path will be highlighted with labels auto
exploring.

– Click on Add Annotations button a small box will appear ”User Annotation”
box with text editor the user can start typing notes there after clicking on
the first button to the left, save and download.

• Fixed points exploration: Figure.3.14

– An overall structure of the fixed points will appear.

– In the fourth tab, the fixed points ribbons will appear:

∗ Color coded where each color of the ribbon match the layer color in the
overall structure.

∗ The outer rectangle width of the ribbon is proportional to the number of
edges in the fixed point.

∗ The inner rectangle width is proportional to the number of vertices in
the fixed point.

∗ Numbers to the left represent the peeling value of the fixed point.

– Click on the ribbon to take you to the desired fixed point exploration. Please
read the ”Whole graph exploration” instructions above as it applies to ex-
ploring each fixed point

– Hovering on a vertex will give the label and extra information about what
other fixed points this vertex appears in.

• Second exploration option - Show vertices and its neighbors on hover:

– To use this the user should check using fixed points and show vertices and
edges on hover checkbox.

– Another exploration option which involves showing vertex and its neighbors
on hover and hide the rest of the topology, keep the previously hovered vertices

10

and its neighbors and allow the user to save the layout so they can come back
to where they left in the future.

– If a graph with more than one connected component, the user should select a
vertex in one the desired connected component, right click on the white space
and choose ”Explore on hover”, this connected component will be explored
in the above way the other connected component will remain visible. In this
way in the future to catch up on where the user left, the previous cached
layout will appear. Figure.3.15

– To cache the current exploration, click on view options in the bottom left of
the screen and click save layout.

– When you navigate back to the saved layout, it will show where the user left.

• Special Features for ”Fabula” dataset and fixed point exploration that will be
expanded to other datasets in the future: Note: these features are customized for
this dataset, to maek it work for another dataset, some changes should be made
on the code for the keywords and tokens customization.

– Annotation Features: Figure.3.11

∗ While exploring one fixed point the user can select a vertex by clicking
on it, move the mouse to the white space of the screen and right click,
select add label to annotation:

· The user can find the added label in the User Annotation box, the
most recent annotated vertex label will appear on the top.

· After a vertex was annotated it will be marked by (x) in the graph
and that will be cached so whenever the user come back to the fixed
point will see it.

· If the same vertex appears in another fixed point and was selected and
annotated, in the user annotation box the label will have (x counter)
where counter means how many times the same label was annotated
from different fixed points.

· In the User Annotation box, the user can select a vertex by typing
the ID of it as it appears in the text editor, or archive it.

· Archive a vertex will move its label to the bottom of the box with (-
counter) and the (x) marker on the vertex will disappear.

– Generate Story: Figure.3.12

∗ When the user is exploring a fixed point, they can start the sparsenet
process by pressing the keyboard key ’s’.

∗ When the first path appears the user can click the Generate Story button,
where an automatic story generation based on the first path will start
with a suggested title, every time the user click generate story button,
the story will be shuffled and regenerated in a new way.

11

∗ If the user show the next path in the sparsenet the generate story will
add a new paragraph generated from the second path, etc.

∗ Each path in the sparsenet is a paragraph of the story generated.

– Sparsenet Nodes Coloring:

∗ When the user is exploring the fixed point sparsenet graph.

∗ In the fifth setting tab the user can check the Color Nodes By Label
checkbox, the nodes will be colored as instructed in the mapping that
will appear, consecutive nodes can be highlighted on request.3.8

∗ In the fifth setting tab the user can check the Color Nodes By Hotspots
checkbox, choose from explore the type of hotspots to color, the user can
download the hotspot and filter the graph by them. Figure.3.9

∗ The hotspots slider filtration start from the first hotspot appears in the
sparsenet and every other hotspot connected to it.

– Vertex Search and Neighbors Graph: Figure.3.13

∗ The user can search for a vertex using the search box in the fifth tab,
type the vertex Id and click ”select by Id” button.

∗ The selected vertex will be marked by (+) and the camera will zoom
to.Figure.3.13

∗ When the user hover on a vertex, the label will give an insight on where
this vertex appears in other fixed points.

∗ If the user discovered the vertex in all the fixed points using the ”select
by Id” search button, the vertex will be marked by a circle.

∗ Now the user can press the keyboard key ’e’ and over on the discovered
vertex to show its neighbors from different fixed points.

– Fixed Point with More than One Connected Component: Figure.3.10

∗ If the fixed point has more than one connected component in the third
info tab there will be the connected components with number of vertices
more than the average, sorted in descending order, labeled by the label
of the vertex with the highest degree in it, with an icon show the shape
of its sparsenet.

∗ The sparsenet of each connected component can be explored by choosing
it from that tab or select one of its vertices right click on the white space
on the screen and choose ”Draw Selected Sparsenet”.

2.7 Assumptions and Dependencies

Assumed Factors:

• The user is using chrome web browser.

12

• The user is aware of the definition of the main algorithms and features are used in
the system.

13

3 External Interface Requirements

3.1 User Interfaces

Figure 3.1: Graph System Main Screen

Figure 3.2: Main Screen with Datasets Tab [6]

14

Figure 3.3: Main Screen Loading

Figure 3.4: Statistics Header and Tab

15

Figure 3.5: Fixed Points Exploring

Figure 3.6: Egonet Exploring

16

Figure 3.7: Sparsenet Exploring

Figure 3.8: Sparsenet Color Nodes By Labels

17

Figure 3.9: Sparsenet Color Nodes By Hotspots

Figure 3.10: Fixed Point with more than one Connected Component

18

Figure 3.11: User Annotation

Figure 3.12: Story Auto Generation

19

Figure 3.13: Neighbors Graph of a Hovered Discovered Vertex

Figure 3.14: Second Exploration Option - On hover

20

Figure 3.15: Second Exploration Option - Multiple Connected Components

21

3.2 Hardware Interfaces

• Windows, MacOS, and Linux.

• Chrome browser which supports WebGL, HTML Javascript.

3.3 Software Interfaces

Software Used Description

Three.js and 3D force Graph JavaScript library used to simulate and display an animated graph

Node.js Used for the server side and data preprocessing

Javascript, HTML and Bootstrap Used for the client side and user interface design

3.4 Communications Interfaces

This project supports chrome web browsers.

22

4 Other Nonfunctional Requirements

4.1 Data and Performance Requirements

This system is interactive with datasets of edges in the range [214 - 216). The data
provided must be in the form of csv, the edges file contains source and target columns
and the labels file contains new id, name columns, if the dataset contains labels in
multiple languages it should be added as in the labels file in the example below.
edges and labels file example :

The edges file should be placed in data2 folder and the labels file should be placed in
temp2 folder. If there is any other classification files it should be added in the temp2
folder, for example in the figure below it shows a classification file, any vertices with an
id between 1 and 99 will be classified under wild animals, etc.
For new classifications, the code should be edited accordingly.

Figure 4.1: Classification file

23

4.1.1 ER Diagram

Figure 4.2: ER Diagram

4.2 Software Quality Attributes

• AVAILABILITY: The system should be available for graph drawing based on the
user request.

• CORRECTNESS: The system should provide the correct graph with correct data
upon request.

• MAINTAINABILITY: The administrators should maintain new datasets and sparsenet
compilation.

• USABILITY: The system response time should satisfy the users.

24

5 Other Requirements

5.1 Appendix A: Demos

Full System Tutorial: https://drive.google.com/file/d/1sa-Tyt-7nNq8eL1k5t9oYoKzHlUiS9Lj/
view?usp=sharing

Story Generation: https://drive.google.com/file/d/1u96qnwM35oudRv8M1kGiH-QOzvykgNZ-/
view?usp=sharing

Story Generation: https://drive.google.com/file/d/1u96qnwM35oudRv8M1kGiH-QOzvykgNZ-/
view?usp=sharing

Color Nodes By Labels: https://drive.google.com/file/d/1SXDlfu2bcBvL5eN2pMnKug8-DWE3JmU5/
view?usp=sharing

Color Nodes By Hotspots: https://drive.google.com/file/d/1ONmjrSvNV4fASG9IHiihMpPKw65bggw0/
view?usp=sharing

User Annotation : https://drive.google.com/file/d/1tTcEfssl0XeQOt3f50VpOQ9bZd-wT1bC/
view?usp=sharing

5.2 Appendix B: Analysis Models

25

https://drive.google.com/file/d/1sa-Tyt-7nNq8eL1k5t9oYoKzHlUiS9Lj/view?usp=sharing
https://drive.google.com/file/d/1sa-Tyt-7nNq8eL1k5t9oYoKzHlUiS9Lj/view?usp=sharing
https://drive.google.com/file/d/1u96qnwM35oudRv8M1kGiH-QOzvykgNZ-/view?usp=sharing
https://drive.google.com/file/d/1u96qnwM35oudRv8M1kGiH-QOzvykgNZ-/view?usp=sharing
https://drive.google.com/file/d/1u96qnwM35oudRv8M1kGiH-QOzvykgNZ-/view?usp=sharing
https://drive.google.com/file/d/1u96qnwM35oudRv8M1kGiH-QOzvykgNZ-/view?usp=sharing
https://drive.google.com/file/d/1SXDlfu2bcBvL5eN2pMnKug8-DWE3JmU5/view?usp=sharing
https://drive.google.com/file/d/1SXDlfu2bcBvL5eN2pMnKug8-DWE3JmU5/view?usp=sharing
https://drive.google.com/file/d/1ONmjrSvNV4fASG9IHiihMpPKw65bggw0/view?usp=sharing
https://drive.google.com/file/d/1ONmjrSvNV4fASG9IHiihMpPKw65bggw0/view?usp=sharing
https://drive.google.com/file/d/1tTcEfssl0XeQOt3f50VpOQ9bZd-wT1bC/view?usp=sharing
https://drive.google.com/file/d/1tTcEfssl0XeQOt3f50VpOQ9bZd-wT1bC/view?usp=sharing

Figure 5.1: Partial Flow Chart Diagram

26

Figure 5.2: Partial Flow Chart Diagram

27

5.3 Appendix C: Fabula Dataset and Other Refrences

Fabula dataset is talking about The Danish stories, it is being collected by UCLA ,It
has five main classifications :
1- ETK : Story Id
2- TMI : Story Motif
3- ATU : Story Topics
4- Places: One Word.
5- People: Two Words.
Each of ATU and TMI has further classification that is being used in the system and
can be found in the following website :
https://sites.ualberta.ca/~urban/Projects/English/Motif_Index.htm

The documentation template credits goes to Jean-Philippe Eisenbarth was used with
the help of the following template: https://github.com/jpeisenbarth/SRS-Tex

28

https://sites.ualberta.ca/~urban/Projects/English/Motif_Index.htm
https://github.com/jpeisenbarth/SRS-Tex

	Introduction
	Purpose
	Project Scope
	Intended Audience and Reading Suggestions
	References

	Overall Description
	Product Perspective
	Product Functions
	User Classes and Characteristics
	Operating Environment
	Design and Implementation Constraints
	User Documentation
	Assumptions and Dependencies

	External Interface Requirements
	User Interfaces
	Hardware Interfaces
	Software Interfaces
	Communications Interfaces

	Other Nonfunctional Requirements
	Data and Performance Requirements
	ER Diagram

	Software Quality Attributes

	Other Requirements
	Appendix A: Demos
	Appendix B: Analysis Models
	Appendix C: Fabula Dataset and Other Refrences

