Project : Face and Digit Classification

Fatima AlSaadeh Ashley Dunn

May 21, 2020

Description

In this project, we designed three classifiers: a naive Bayes classifier, a percep-
tron classifier and a multilayer perceptron classifier. These three classifiers were
tested on two image data sets: a set of scanned handwritten digit images and
a set of face images in which edges have already been detected. The project
code followed the instructions from the programming assignments of Berkeley’s
CS188 course. [1]

Data Processing, Splitting and Commands

After reading and preparing the data for processing and classifying, we have
training and testing datasets and labels, the faces data contains 451 training
data points and 150 test data points. The digits data contains 5000 training
and 1000 test data points.

The training data points were picked randomly in groups of 10%, 20%,

30%,...100% to train, tune and compare the accuracy of the classifiers for each
percentage used of it.
The project provides the option of choosing the dataset to be used - faces or
digits, the size of the training and testing dataset, and to autotune the data or
not. The following commands are samples to what we used to test the project
and get the results :

(run the perceptron classifier with 5000 training images and 1000 test images
on digits data)

python dataClassifier.py -c perceptron -t 5000 -s 1000 -d digits
(run the mlp classifier with default settings)

python dataClassifier.py -c mlp
(run the naiveBayes classifier on faces data with autotune)

python dataClassifier.py -c naiveBayes -t 300 -s 100 -d faces -a

Perceptron

The perceptron classifier uses a binary classifier to determine if the features of
the input match the characteristics of the class.
for each of the classes (one class per digit, one class for face). The image will
be classified in the class that produces that maximum score when the feature

vector is multiplied by that classes weight vector.

Algorithm Pseudocode

Algorithm 1 Perceptron

Function perceptron(F)

Input: F = training dataset features [f1,...,fm], L= training dataset labels
Output: List of weight vectors for each class

1. Read the training dataset

2. For each training image with feature vector f, get the score for each class

y with:

3. Compute the max score (y’) for f to detmine the closest matching class

score(f,y) = 3 faw?

4. If yy' # y, adjust the weights accordingly:

wy =wY + f

w¥ =wY — f

Results
Faces

percentage | training data size | training time(s) | accuracy(%) | standard deviation
10% 45 4.647 79.3% 4.582
20% 90 5.732 80.0% 4.0
30% 135 8.185 88.0% 1.0
40% 180 10.495 87.3% 1.414
50% 225 13.018 87.3% 0
60% 270 16.505 87.3% 0
70% 315 17.110 87.3% 0
80% 360 19.655 87.3% 0
90% 405 22.176 87.3% 0
100% 451 24.783 87.3% 0

There is a binary classifier

Digits

percentage | training data size | training time(s) | accuracy(%) | standard deviation
10% 500 14.055 80.1% 37.467
20% 1000 35.018 78.8% 14.197
30% 1500 54.898 79.7% 18.276
40% 2000 60.905 78.8% 13.457
50% 2500 50.160 80.6% 5.657
60% 3000 86.550 82.8% 12.247
70% 3500 62.675 81.3% 6.325
80% 4000 75.353 82.1% 8.307
90% 4500 90.971 80.7% 5.385
100% 5000 94.643 81.5% 4.583

Naive Bayes Classifier

This classification method is built based on Bayes theorem where we assume
that the features are independent. We are using the log joint probability to
avoid probability values approaching to zero when multiplying many probabili-

ties together.
_ P(fL fmly) P(y)
P(f1,...,fm)

P(y|f1,.., fm)

= argmax(log P (y) + Z log (fily) P (y))

v i=1

Algorithm Pseudocode

Algorithm 2 Naive Bayes Classifier

Function naiveBayesClassifier(F)
Input: F = training dataset features [f1,...,fm], L= training dataset labels
Output: P (f1,...,fm|y)

1. Read the training dataset
2. Count the occurrence for each label in the training labels L
3. Normalize prior probability p(y)

p(y) = numberoflabel; [totallabels

4. Count Black and White Features in F Labels : number of times a feature
is black or white pixel in all images

count(black_feature_label)

count(white_feature_label)
count(total - features_labels)

5. Smooth the features counts by adding k value
6. Calculate the conditional probability

P(f1,....fmly)

After this for the test data we calculate the posterior by selecting the max-
imum value out of calculated log joint probability the
(log P (y) + i~ log (fily) P (y)) followed by the last step of finding the cor-
rectness percentage of our overall classification by comparing the calculated
guessed label with the original test labels.

Autotune Smoothing

For the smoothing step we allowed the option to autotune by selecting the -a
option where the classification will run over different k values:

kgrid = [0.001,0.01,0.05,0.1,0.5, 1, 5, 10, 20, 50]

for each percentage of the training data it will run over all the k values, find the
best correctness in the validation data and use this k for training the data that
will be used to classifay the test data.

Results

The best K for faces and digits data in most of the iterations was 0.001, the
data points in each iteration below were picked randomly, run for 5 iterations
per percentage and the recorded values for the training time and accuracy are
the average of the total values in these 5 iteration, the results may vary each
time we run the classifier.

Faces
percentage | training data size | training time(s) | accuracy(%) | standard deviation
10% 45 0.797 68.7% 8.774
20% 90 1.397 80.7% 14.387
30% 135 2.096 81.3% 13.341
40% 180 2.791 87.3% 2.449
50% 225 3.305 87.3% 1.414
60% 270 5.522 86.7% 1.0
70% 315 5.606 88.7% 3.0
80% 360 5.461 87.3% 2.236
90% 405 6.091 88.0% 1.414
100% 451 6.756 89.3% 0.0

Digits
percentage | training data size | training time(s) | accuracy(%) | standard deviation
10% 500 0.809 72.6% 18.138
20% 1000 1.686 75.0% 6.324
30% 1500 2.374 75.6% 13.928
40% 2000 3.038 76.8% 7.416
50% 2500 3.867 76.2% 3.0
60% 3000 4.646 76.5% 7.141
70% 3500 5.403 76.6% 4.0
80% 4000 6.253 76.6% 3.872
90% 4500 6.975 76.7% 2.449
100% 5000 7.630 76.9% 0

Neural Network

This neural network implementation is a multilayer perceptron, which has one
hidden layer of 150 perceptrons. The feature vector from the input layer gets
input to each of the hidden perceptrons. The output of the hidden perceptrons
then becomes the input for the output layer, which will determine the class of the
image. Backward propagation is used to adjust the weights at each perceptron
based on the error.

Algorithm Pseudocode

Algorithm 3 Multilayer Perceptron

Function mlp(F)
Input: F = training dataset features [f1,...,fm], L= training dataset labels
Output: List of weight vectors for each class

1.
2.

Read the training dataset
Initialize the weights for the input layer and hidden layer as vectors of

dimensions m by 150 and 150 by number of classes for vectors w0 and wl,
respecitively. Set the learning rate = 1

3.

Training

for each training image do

Forward propagation:

Take the dot product of the input vector and w0, and apply the sigmoid
function

Take the dot product of the previous result and w1, and apply the sigmoid
function
Backward Propagation:

Compute the overall error, then the error caused by the output layer
weights and error caused by the hidden layer weights

Update the weights by taking the dot product of the weight vectors and
their corresponding error vectors

end for
Results
Faces

percentage | training data size | training time(s) | accuracy(%) | standard deviation
10% 45 4.646 61.3% 7.746
20% 90 10.064 72.0% 3.871
30% 135 14.701 72.0% 3.162
40% 180 24.416 78.0% 3.162
50% 225 18.473 82.0% 3.00
60% 270 30.939 85.3% 2.449
70% 315 22.008 87.3% 4.000
80% 360 30.972 87.3% 3.317
90% 405 35.5630 90.7% 5.099
100% 451 33.871 88.0% 2.449

Digits
percentage | training data size | training time(s) | accuracy(%) | standard deviation
10% 500 1.712 83.0% 16.971
20% 1000 3.475 85.1% 17.205
30% 1500 5.755 85.9% 8.000
40% 2000 7.632 87.9% 7.681
50% 2500 9.917 88.9% 5.385
60% 3000 12.681 89.9% 9.220
70% 3500 13.690 87.9% 4.796
80% 4000 15.635 89.9% 13.490
90% 4500 17.548 89.9% 14.107
100% 5000 18.476 88.9% 5.196
References

[1] D. Klein and J. DeNero. Project 5: Classification.

